

JW-003-1015043 Seat No.

B. Sc. (Sem. V) (CBCS) (W.I.F.-2016) Examination

October - 2019

Statistics: S-502

[Mathematical Statistics]
(New Course)

Faculty Code: 003

Subject Code: 1015043

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) All questions are compulsory.
- (2) All questions carry equal marks.
- (3) Student can use their own scientific calculator.
- 1 (a) Give the answer of following questions:
 - (1) ____ is a characteristic function of Standard Normal distribution.
 - (2) ____ is a characteristic function of Geometric distribution.
 - (3) ____ is a characteristic function of Poisson distribution.
 - (4) ____ is a characteristic function of chi-square distribution.
 - (b) Wirte any one:
 - (1) Obtain characteristic function of Binomial distribution.
 - (2) Show that $\emptyset_{x}(0)=1$.
 - (c) Write any one:
 - (1) Obtain characteristic function of Normal distribution.
 - (2) Obtain probability density function for the characteristic

function
$$\varnothing_x(t) = e^{-\left(\frac{t^2\sigma^2}{2}\right)}$$
.

(d)	Write	any	one	
\ /		_		

- 5
- (1) State and prove weak law of large number.
- (2) Prove that

(i)
$$\mu'_r = (-i)^r \left[\frac{d^r}{dt^r} \varnothing_x(t) \right]_{t=0}$$

(ii)
$$\mu_r = (-i)^r \left[\frac{d^r}{dt^r} \varnothing_u(t) \right]_{t=0}$$
; where $u = x - \mu$.

2 (a) Give the answer of following questions:

- 4
- (1) Measured of Kurtosis coefficient for Normal distribution are ____ and ___ .
- (2) For normal distribution Mean deviation = _____.
- (3) For Normal distribution $\mu_{2n} = \underline{\hspace{1cm}}$
- (4) If two independent variates $X_1 \sim N(\mu_1, \sigma_1^2)$ and

$$X_2 \sim N(\mu_2, \sigma_2^2)$$
 then $X_1 - X_2$ is distributed as _____.

(b) Write any one:

- 2
- (1) Obtain CGF of Normal distribution and from it show that $\mu_4 = 3\sigma^4$.
- (2) Obtain median of Normal distribution.
- (c) Write any one:

3

- (1) Show that a linear combination of independent normal variates is also normal variate.
- (2) Obtain mode of Normal distribution.
- (d) Write any one:

5

- (1) Derive Normal distribution.
- (2) Obtain MFG of normal distribution and also show that $\beta_1 = 0$ and $\beta_2 = 3$.
- 3 (a) Give the answer of following questions:

4

(1) If two independent variates $X_1 \sim \Lambda(\mu_1, \sigma_1^2)$ and

$$X_2 \sim \Lambda(\mu_2, \sigma_2^2)$$
 then $X_1 \div X_2$ is distributed as _____.

		(2)	If two independent variates $X_1 \sim \gamma(n_1)$ and X_2	$\sim \gamma(n_2)$
			then $\frac{X_1}{X_1 + X_2}$ is distributed as	
		(3)	is a moment generating function of $\gamma(c)$	(x, p).
		(4)	Weibull distribution has application in	
	(b)	Writ	te any one :	2
		(1)	Define gamma distribution and find its mean.	
		(2)	Define uniform distribution and find its mean.	
	(c)	Writ	te any one :	3
		(1)	Obtain the relation between gamma and normal distribution.	
		(2)	Define beta distribution of first kind and find it and variance.	s mean
	(d)	Writ	te any one :	5
		(1)	Obtain MGF of Gamma distribution with parame	eters α
			and p . Also show that $3\beta_1 - 2\beta_2 + 6 = 0$.	
		(2)	Obtain coefficient of skewness for log standard distribution.	normal
4	(a)	Give	e the answer of following questions:	4
		(1)	The mean of the chi-square distribution is variance.	_ of its
		(2)	t – distribution curve in respect of tails is alway	S
		(3)	If two independent variates $X_1 \sim \Lambda(\mu_1, \sigma_1^2)$ and	
			$X_2 \sim \Lambda\left(\mu_2, \sigma_2^2\right)$ then $X_1 \cdot X_2$ is distributed as	·
		(4)	t – distribution with 1 d.f. reduces to	
	(b)	Writ	te any one :	2
		(1)	Obtain MGF of χ^2 distribution.	
		(2)	Obtain relation between t-distribution and F-distr	ibution.
JW-	-003-1	10150	43] 3	Contd

	(c)	Write any		3
		(1) Obtai	in CGF of χ^2 distribution and show that	
		$3\beta_1$ –	$2\beta_2 + 6 = 0.$	
			in limiting form of t-distribution for large degrees eedom.	3
	(d)	Write any	one:	5
		(1) Deriv	ve t-distribution.	
		(2) Deriv	e F-distribution.	
5 (a)		Give the a	inswer of following questions:	4
		• •	ple correlation is a measure ofiation of a variable with other variables.	
		(2) If r_{12}	$c_2 = 0.28, r_{23} = 0.49, r_{31} = 0.51,$	
		$\sigma_1 = 1$	$2.7, \sigma_2 = 2.4, \sigma_3 = 2.7$ then $b_{31.2} = $	
		(3) The 1	range of partial correlation coefficient is	
		assoc	al correlation coefficients is a measure of iation between two variables the common of the rest of the variable.	n
(b)		Write any	one:	2
		(1) Usual	I notation prove that $\sigma_{1.23}^2 = \sigma_1^2 \left(1 - r_{12}^2 \right) \left(1 - r_{13.2}^2 \right)$.	
		(2) Obtai	in μ_{20} for bivariate normal distribution.	
	(c)	Write any	one:	3
		(1) Usual	l notation of multiple correlation and multiple	
		regres	ssion, prove that $b_{12} = \frac{b_{12.3} + b_{13.2} b_{32.1}}{1 - b_{13.2} b_{31.2}}$.	
			In conditional distribution of x when y is given for a riate distribution.	r
	(d)	Write any	one:	5
			l notation of multiple correlation and multiple	
		regres	ssion, prove that $R_{1.23}^2 = \frac{r_{12}^2 + r_{13}^2 - 2r_{12} r_{23} r_{13}}{1 - r_{23}^2}$.	

distribution.

(2) Obtain marginal distribution of y for Bi-variate